Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8341, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097570

RESUMO

The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.


Assuntos
Genes Precoces , Proteína Quinase 1 Ativada por Mitógeno , Humanos , DNA/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Ativação Transcricional
2.
J Biol Chem ; 299(12): 105477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981206

RESUMO

RNA polymerase II (RNAPII) transcribes DNA wrapped in the nucleosome by stepwise pausing, especially at nucleosomal superhelical locations -5 and -1 [SHL(-5) and SHL(-1), respectively]. In the present study, we performed cryo-electron microscopy analyses of RNAPII-nucleosome complexes paused at a major nucleosomal pausing site, SHL(-1). We determined two previously undetected structures, in which the transcribed DNA behind RNAPII is sharply kinked at the RNAPII exit tunnel and rewrapped around the nucleosomal histones in front of RNAPII by DNA looping. This DNA kink shifts the DNA orientation toward the nucleosome, and the transcribed DNA region interacts with basic amino acid residues of histones H2A, H2B, and H3 exposed by the RNAPII-mediated nucleosomal DNA peeling. The DNA loop structure was not observed in the presence of the transcription elongation factors Spt4/5 and Elf1. These RNAPII-nucleosome structures provide important information for understanding the functional relevance of DNA looping during transcription elongation in the nucleosome.


Assuntos
Histonas , Nucleossomos , RNA Polimerase II , Cromatina , Microscopia Crioeletrônica , DNA/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo
3.
Nucleic Acids Res ; 51(19): 10364-10374, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37718728

RESUMO

The N-terminal tails of histones protrude from the nucleosome core and are target sites for histone modifications, such as acetylation and methylation. Histone acetylation is considered to enhance transcription in chromatin. However, the contribution of the histone N-terminal tail to the nucleosome transcription by RNA polymerase II (RNAPII) has not been clarified. In the present study, we reconstituted nucleosomes lacking the N-terminal tail of each histone, H2A, H2B, H3 or H4, and performed RNAPII transcription assays. We found that the N-terminal tail of H3, but not H2A, H2B and H4, functions in RNAPII pausing at the SHL(-5) position of the nucleosome. Consistently, the RNAPII transcription assay also revealed that the nucleosome containing N-terminally acetylated H3 drastically alleviates RNAPII pausing at the SHL(-5) position. In addition, the H3 acetylated nucleosome produced increased amounts of the run-off transcript. These results provide important evidence that the H3 N-terminal tail plays a role in RNAPII pausing at the SHL(-5) position of the nucleosome, and its acetylation directly alleviates this nucleosome barrier.


Assuntos
Histonas , Nucleossomos , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , RNA Polimerase II/genética , Acetilação , Cromatina
4.
J Biochem ; 174(6): 549-559, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37757444

RESUMO

Histone H3.8 is a non-allelic human histone H3 variant derived from H3.3. H3.8 reportedly forms an unstable nucleosome, but its structure and biochemical characteristics have not been revealed yet. In the present study, we reconstituted the nucleosome containing H3.8. Consistent with previous results, the H3.8 nucleosome is thermally unstable as compared to the H3.3 nucleosome. The entry/exit DNA regions of the H3.8 nucleosome are more accessible to micrococcal nuclease than those of the H3.3 nucleosome. Nucleosome transcription assays revealed that the RNA polymerase II (RNAPII) pausing around the superhelical location (SHL) -1 position, which is about 60 base pairs from the nucleosomal DNA entry site, is drastically alleviated. On the other hand, the RNAPII pausing around the SHL(-5) position, which is about 20 base pairs from the nucleosomal DNA entry site, is substantially increased. The cryo-electron microscopy structure of the H3.8 nucleosome explains the mechanisms of the enhanced accessibility of the entry/exit DNA regions, reduced thermal stability and altered RNAPII transcription profile.


Assuntos
Histonas , Nucleossomos , Humanos , Histonas/genética , Microscopia Crioeletrônica , DNA/química , RNA Polimerase II/metabolismo
5.
Trends Cell Biol ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37596139

RESUMO

In eukaryotes, all genetic processes take place in the cell nucleus, where DNA is packaged as chromatin in 'beads-on-a-string' nucleosome arrays. RNA polymerase II (RNAPII) transcribes protein-coding and many non-coding genes in this chromatin environment. RNAPII elongates RNA while passing through multiple nucleosomes and maintaining the integrity of the chromatin structure. Recent structural studies have shed light on the detailed mechanisms of this process, including how transcribing RNAPII progresses through a nucleosome and reassembles it afterwards, and how transcription elongation factors, chromatin remodelers, and histone chaperones participate in these processes. Other studies have also illuminated the crucial role of nucleosomes in preinitiation complex assembly and transcription initiation. In this review we outline these advances and discuss future perspectives.

6.
Cells ; 12(10)2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-37408222

RESUMO

In eukaryotes, genomic DNA is tightly wrapped in chromatin. The nucleosome is a basic unit of chromatin, but acts as a barrier to transcription. To overcome this impediment, the RNA polymerase II elongation complex disassembles the nucleosome during transcription elongation. After the RNA polymerase II passage, the nucleosome is rebuilt by transcription-coupled nucleosome reassembly. Nucleosome disassembly-reassembly processes play a central role in preserving epigenetic information, thus ensuring transcriptional fidelity. The histone chaperone FACT performs key functions in nucleosome disassembly, maintenance, and reassembly during transcription in chromatin. Recent structural studies of transcribing RNA polymerase II complexed with nucleosomes have provided structural insights into transcription elongation on chromatin. Here, we review the structural transitions of the nucleosome during transcription.


Assuntos
Nucleossomos , RNA Polimerase II , RNA Polimerase II/metabolismo , Transcrição Gênica , Cromatina/genética , DNA
7.
Mol Cell ; 83(15): 2781-2791.e4, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37478848

RESUMO

Dengue is a mosquito-borne viral infection caused by dengue virus (DENV), a member of the flaviviruses. The DENV genome is a 5'-capped positive-sense RNA with a unique 5'-stem-loop structure (SLA), which is essential for RNA replication and 5' capping. The virus-encoded proteins NS5 and NS3 are responsible for viral genome replication, but the structural basis by which they cooperatively conduct the required tasks has remained unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of SLA-bound NS5 (PC), NS3-bound PC (PC-NS3), and an RNA-elongating NS5-NS3 complex (EC). While SLA bridges the NS5 methyltransferase and RNA-dependent RNA polymerase domains in PC, the NS3 helicase domain displaces it in elongation complex (EC). The SLA- and NS3-binding sites overlap with that of human STAT2. These structures illuminate the key steps in DENV genome replication, namely, SLA-dependent replication initiation, processive RNA elongation, and 5' capping of the nascent genomic RNA, thereby providing foundations to combat flaviviruses.


Assuntos
Vírus da Dengue , Animais , Humanos , Vírus da Dengue/genética , Microscopia Crioeletrônica , Sítios de Ligação , RNA Polimerase Dependente de RNA/metabolismo , Capuzes de RNA , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , RNA Viral/metabolismo
8.
J Mol Biol ; 435(13): 168130, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37120012

RESUMO

In transcription-coupled repair (TCR), transcribing RNA polymerase II (RNAPII) stalls at a DNA lesion and recruits TCR proteins to the damaged site. However, the mechanism by which RNAPII recognizes a DNA lesion in the nucleosome remains enigmatic. In the present study, we inserted an apurinic/apyrimidinic DNA lesion analogue, tetrahydrofuran (THF), in the nucleosomal DNA, where RNAPII stalls at the SHL(-4), SHL(-3.5), and SHL(-3) positions, and determined the structures of these complexes by cryo-electron microscopy. In the RNAPII-nucleosome complex stalled at SHL(-3.5), the nucleosome orientation relative to RNAPII is quite different from those in the SHL(-4) and SHL(-3) complexes, which have nucleosome orientations similar to naturally paused RNAPII-nucleosome complexes. Furthermore, we found that an essential TCR protein, Rad26 (CSB), enhances the RNAPII processivity, and consequently augments the DNA damage recognition efficiency of RNAPII in the nucleosome. The cryo-EM structure of the Rad26-RNAPII-nucleosome complex revealed that Rad26 binds to the stalled RNAPII through a novel interface, which is completely different from those previously reported. These structures may provide important information to understand the mechanism by which RNAPII recognizes the nucleosomal DNA lesion and recruits TCR proteins to the stalled RNAPII on the nucleosome.


Assuntos
Nucleossomos , RNA Polimerase II , Transcrição Gênica , Microscopia Crioeletrônica , DNA/metabolismo , Reparo do DNA , Nucleotídeos , RNA Polimerase II/metabolismo
9.
Sci Adv ; 9(6): eade7093, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753546

RESUMO

Transcription termination is an essential step in transcription by RNA polymerase (RNAP) and crucial for gene regulation. For many bacterial genes, transcription termination is mediated by the adenosine triphosphate-dependent RNA translocase/helicase Rho, which causes RNA/DNA dissociation from the RNAP elongation complex (EC). However, the structural basis of the interplay between Rho and RNAP remains obscure. Here, we report the cryo-electron microscopy structure of the Thermus thermophilus RNAP EC engaged with Rho. The Rho hexamer binds RNAP through the carboxyl-terminal domains, which surround the RNA exit site of RNAP, directing the nascent RNA seamlessly from the RNA exit to its central channel. The ß-flap tip at the RNA exit is critical for the Rho-dependent RNA release, and its deletion causes an alternative Rho-RNAP binding mode, which is irrelevant to termination. The Rho binding site overlaps with the binding sites of other macromolecules, such as ribosomes, providing a general basis of gene regulation.


Assuntos
Thermus thermophilus , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Fator Rho/genética , Fator Rho/metabolismo , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/metabolismo , RNA/metabolismo
10.
J Mol Biol ; 435(4): 167936, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36610636

RESUMO

Polycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process. Here, we have examined the effect of H2A ubiquitination and linker-DNA on H3-tail dynamics and H3K27 methylation by PRC2. In naïve nucleosomes, the H3-tail dynamically contacts linker DNA in addition to core DNA, and the linker-DNA is as important for H3K27 methylation as H2A ubiquitination. H2A ubiquitination alters contacts between the H3-tail and DNA to improve the methyltransferase activity of the PRC2-AEBP2-JARID2 complex. Collectively, our data support a model in which H2A ubiquitination by PRC1 synergizes with linker-DNA to hold H3 histone tails poised for their methylation by PRC2-AEBP2-JARID2.


Assuntos
Histonas , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Ubiquitinação , DNA/química , Histonas/química , Histonas/genética , Metilação , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/genética
11.
Nat Commun ; 13(1): 7287, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435862

RESUMO

In chromatin, linker histone H1 binds to nucleosomes, forming chromatosomes, and changes the transcription status. However, the mechanism by which RNA polymerase II (RNAPII) transcribes the DNA in the chromatosome has remained enigmatic. Here we report the cryo-electron microscopy (cryo-EM) structures of transcribing RNAPII-chromatosome complexes (forms I and II), in which RNAPII is paused at the entry linker DNA region of the chromatosome due to H1 binding. In the form I complex, the H1 bound to the nucleosome restricts the linker DNA orientation, and the exit linker DNA is captured by the RNAPII DNA binding cleft. In the form II complex, the RNAPII progresses a few bases ahead by releasing the exit linker DNA from the RNAPII cleft, and directly clashes with the H1 bound to the nucleosome. The transcription elongation factor Spt4/5 masks the RNAPII DNA binding region, and drastically reduces the H1-mediated RNAPII pausing.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , RNA Polimerase II/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo
12.
PLoS One ; 17(9): e0272992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129943

RESUMO

Native Oplophorus luciferase (OpLase) and its catalytic 19 kDa protein (wild KAZ) show highest luminescence activity with coelenterazine (CTZ) among CTZ analogs. Mutated wild KAZ with 16 amino acid substitutions (nanoKAZ/nanoLuc) utilizes bis-coelenterazine (bis-CTZ) as the preferred substrate and exhibits over 10-fold higher maximum intensity than CTZ. To understand the substrate selectivity of nanoKAZ between CTZ and bis-CTZ, we prepared the reverse mutants of nanoKAZ by amino acid replacements with the original amino acid residue of wild KAZ. The reverse mutant with L18Q and V27L substitutions (QL-nanoKAZ) exhibited 2.6-fold higher maximum intensity with CTZ than that of nanoKAZ with bis-CTZ. The catalytic properties of QL-nanoKAZ including substrate specificity, luminescence spectrum, luminescence kinetics, luminescence products of CTZ, and luminescence inhibition by deaza-CTZ analogs were characterized and were compared with other CTZ-utilizing luciferases such as Gaussia and Renilla luciferases. Thus, QL-nanoKAZ with CTZ could be used as a potential reporter protein for various luminescence assay systems. Furthermore, the crystal structure of QL-nanoKAZ was determined at 1.70 Å resolution. The reverse mutation at the L18Q and V27L positions of α2-helix in nanoKAZ led to changes in the local structures of the α4-helix and the ß6- and ß7-sheets, and might enhance its binding affinity and oxidation efficiency with CTZ to emit light.


Assuntos
Decápodes , Aminoácidos , Animais , Decápodes/metabolismo , Imidazóis , Luciferases/metabolismo , Luciferases de Renilla/genética , Medições Luminescentes , Proteínas Mutantes/metabolismo , Pirazinas
13.
Science ; 377(6611): eabp9466, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35981082

RESUMO

During gene transcription, RNA polymerase II (RNAPII) traverses nucleosomes in chromatin, but the mechanism has remained elusive. Using cryo-electron microscopy, we obtained structures of the RNAPII elongation complex (EC) passing through a nucleosome in the presence of the transcription elongation factors Spt6, Spn1, Elf1, Spt4/5, and Paf1C and the histone chaperone FACT (facilitates chromatin transcription). The structures show snapshots of EC progression on DNA mediating downstream nucleosome disassembly, followed by its reassembly upstream of the EC, which is facilitated by FACT. FACT dynamically adapts to successively occurring subnucleosome intermediates, forming an interface with the EC. Spt6, Spt4/5, and Paf1C form a "cradle" at the EC DNA-exit site and support the upstream nucleosome reassembly. These structures explain the mechanism by which the EC traverses nucleosomes while maintaining the chromatin structure and epigenetic information.


Assuntos
Cromatina , Chaperonas de Histonas , Nucleossomos , RNA Polimerase II , Fatores de Elongação da Transcrição , Cromatina/química , Microscopia Crioeletrônica , DNA , Chaperonas de Histonas/química , Humanos , Nucleossomos/química , RNA Polimerase II/química , Saccharomycetales , Transcrição Gênica , Fatores de Elongação da Transcrição/química
14.
J Biochem ; 172(2): 79-88, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35485963

RESUMO

Komagataella pastoris is a methylotrophic yeast that is commonly used as a host cell for protein production. In the present study, we reconstituted the nucleosome with K. pastoris histones and determined the structure of the nucleosome core particle by cryogenic electron microscopy. In the K. pastoris nucleosome, the histones form an octamer and the DNA is left-handedly wrapped around it. Micrococcal nuclease assays revealed that the DNA ends of the K. pastoris nucleosome are somewhat more accessible, as compared with those of the human nucleosome. In vitro transcription assays demonstrated that the K. pastoris nucleosome is transcribed by the K. pastoris RNA polymerase II (RNAPII) more efficiently than the human nucleosome, while the RNAPII pausing positions of the K. pastoris nucleosome are the same as those of the human nucleosome. These results suggested that the DNA end flexibility may enhance the transcription efficiency in the nucleosome but minimally affect the nucleosomal pausing positions of RNAPII.


Assuntos
Nucleossomos , Saccharomycetales , DNA/metabolismo , Histonas/metabolismo , Humanos , RNA Polimerase II/metabolismo , Saccharomycetales/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197289

RESUMO

Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.


Assuntos
Canais de Cloreto/química , Lasers , Canais de Cloreto/metabolismo , Cristalografia , Citoplasma/metabolismo , Transporte de Íons , Luz , Conformação Proteica , Raios X
17.
PLoS Negl Trop Dis ; 13(11): e0007894, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738758

RESUMO

Dengue is a mosquito-borne viral infection that has spread globally in recent years. Around half of the world's population, especially in the tropics and subtropics, is at risk of infection. Every year, 50-100 million clinical cases are reported, and more than 500,000 patients develop the symptoms of severe dengue infection: dengue haemorrhagic fever and dengue shock syndrome, which threaten life in Asia and Latin America. No antiviral drug for dengue is available. The dengue virus (DENV) non-structural protein 5 (NS5), which possesses the RNA-dependent RNA polymerase (RdRp) activity and is responsible for viral replication and transcription, is an attractive target for anti-dengue drug development. In the present study, 16,240 small-molecule compounds in a fragment library were screened for their capabilities to inhibit the DENV type 2 (DENV2) RdRp activities in vitro. Based on in cellulo antiviral and cytotoxity assays, we selected the compound RK-0404678 with the EC50 value of 6.0 µM for DENV2. Crystallographic analyses revealed two unique binding sites for RK-0404678 within the RdRp, which are conserved in flavivirus NS5 proteins. No resistant viruses emerged after nine rounds of serial passage of DENV2 in the presence of RK-0404678, suggesting the high genetic barrier of this compound to the emergence of a resistant virus. Collectively, RK-0404678 and its binding sites provide a new framework for antiviral drug development.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Ligação Proteica , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
18.
Science ; 363(6428): 744-747, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30733384

RESUMO

RNA polymerase II (RNAPII) transcribes chromosomal DNA that contains multiple nucleosomes. The nucleosome forms transcriptional barriers, and nucleosomal transcription requires several additional factors in vivo. We demonstrate that the transcription elongation factors Elf1 and Spt4/5 cooperatively lower the barriers and increase the RNAPII processivity in the nucleosome. The cryo-electron microscopy structures of the nucleosome-transcribing RNAPII elongation complexes (ECs) reveal that Elf1 and Spt4/5 reshape the EC downstream edge and intervene between RNAPII and the nucleosome. They facilitate RNAPII progression through superhelical location SHL(-1) by adjusting the nucleosome in favor of the forward progression. They suppress pausing at SHL(-5) by preventing the stable RNAPII-nucleosome interaction. Thus, the EC overcomes the nucleosomal barriers while providing a platform for various chromatin functions.


Assuntos
Nucleossomos/química , RNA Polimerase II/química , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/química , Cromatina/química , Microscopia Crioeletrônica , DNA , Conformação Proteica , Saccharomycetales
19.
Nature ; 564(7736): E37, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30459470

RESUMO

In Fig. 1b of this Article, a U was inadvertently inserted after G15 in the D loop. The original Article has not been corrected.

20.
Science ; 362(6414): 595-598, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30287617

RESUMO

Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.


Assuntos
Epigênese Genética , Nucleossomos/química , Nucleossomos/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transcrição Gênica , Cromatina/genética , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Nucleossomos/ultraestrutura , RNA Polimerase II/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...